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We study numerically the dynamic evolution of a two-dimensional system of charged particles which
interact with a logarithmic potential, move with constant mobility, and annihilate on contact with an op-
posite charge. It is shown that in the diffusive regime, at high temperature where Brownian motion
dominates, the number density decay is described by a power law with the exponent —0.55+0.05, which
is in agreement with theoretical result —0.5. In the deterministic regime, where motion is controlled by
the interparticle forces, the exponent is —0.90+0.05. A simple scaling hypothesis is suggested to ex-

plain this unusual exponent.

PACS number(s): 61.30.Cz, 61.30.Jf

INTRODUCTION

The study of topological defects has played an impor-
tant role in liquid crystal (LC) physics, especially in the
understanding of the symmetry and order of LC phases.
This problem is particularly interesting in two dimen-
sions. In freely suspended smectic-C LC films the direc-
tor order is characterized by a two-dimensional orienta-
tion field, c(x,y) [1], and topological defects; in this case
vortices (+27 point disclinations) in ¢, can be visualized
using depolarized reflected light microscopy (DRLM) [2]
and, therefore, studied directly. The observation of spon-
taneous thermal fluctuations of such single vortices has
been already carried out [3]. By transiently cycling a
smectic film from the smectic-C phase to the smectic- 4
phase and back to the smectic-C phase, it is possible to
generate arrays of such topological defects, which then
coarsen under the influence of deterministic and Browni-
an forces [4]. In this paper we present a molecular dy-
namics computer simulation study of the coarsening pro-
cess. In our simulation the topological defects are treated
as dimensionless pointlike + or — charges. We take the
deterministic interactions between defects to be those ob-
tained from Frank elasticity: pair forces between parti-
cles i and j being F;; = 1/r;;, where r;=|r;—r;| is the in-
terparticle separation. The defects are assumed to move
in a background medium with a constant mobility x and
are in contact with a thermal bath of temperature T.

There have been several recent theoretical and numeri-
cal studies of defect dynamics in related two-dimensional
(2D) systems. Toussaint and Wilczek [5] studied annihi-
lation kinetics of a 2D system with + and — pointlike
defects, which annihilate in contact, but do not otherwise
interact (pure diffusion regime). They showed that in the
case of random particle distribution at the beginning, ini-
tial correlations slow down the annihilation process, and
the particle density in the system decays accordingly to
the power law p(¢) <t ™", with exponent v=0.5. This de-
cay is significantly slower than the ¢ ~! behavior, obtained
for a system with random defect distribution in the
mean-field approximation, where all spatial correlations
are assumed to be insignificant at all times. At much
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longer times, when diffusion length becomes comparable
with system size, and provided that not all particles an-
nihilated at this time, initial correlations become
insignificant, and mean-field decay rate, described by the
power law with exponent v=1, is observed indeed. We
will refer to these two regions as “intermediate” and
“final” scaling regions, respectively.

In several studies [6—10] the time-dependent Landau-
Ginzburg model was employed, analyzing defects (vor-
tices in the XY model) as singularities of the orientation
field. Mondello and Goldenfeld [6] analyzed the 2D XY
system with continuous-symmetry conserved order pa-
rameter at zero temperature. They investigated the de-
cay of defect density and found it to be described by the
power law with exponent v=0.75. Yurke et al. [7] con-
sidered the same system and suggested that the topologi-
cal singularities, which interact effectively with the 1/r
force, are also subject to a drag mobility u, dependent on
the overall particle configuration, that is obtained by in-
tegration of the spin dissipation over the entire system
area. The result (for a single vortex with core radius 7,
on a film of radius 7) is

1/u=2mn4in(r/r.) , (1)

where 7, is the rotational viscosity.

This dependence of the drag mobility on system size r
leads, upon replacing r with defect separation, in a mul-
tiparticle annihilating system, in which positional corre-
lations are ignored, to the following time dependence of
particle density [7]:

p(t)e<t™VInz, v=1. (2)

The logarithmic factor in (2) is due to the effective dis-
tance dependence of the mobility for a pair of interacting
defects; an exponent v=1 is the mean-field prediction for
annihilation rate, obtained if the correlations are neglect-
ed. Thus, according to Ref. [7], in the case of a two-
dimensional XY system, the logarithmic correction due to
screening of viscous drag on a particle by neighboring
particles is large enough to account for deviation from
mean-field behavior in the case when deterministic forces
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prevail over thermal diffusion. As was mentioned earlier,
in our simulations we considered particles of two
different signs having constant mobility, so no variation
of the drag on a defect is introduced in the simulation,
and the logarithmic corrections of Ref. [7] ought not ap-
pear.

In the present work, two particles of opposite signs
were considered to have annihilated, if distance between
them becomes less than .. Thus, the kinetic equation for
particle density is:

%%= —2nr.g(t,r. v p?, (3)

where v, =2Kpu/r, is the relative velocity of two particles
separated by r., g(t,r.) is a pair correlation function for
particles of opposite charge at time ¢ at a distance r,, K is
the force constant, and pu is the single particle mobility.
Equation (3), of course, suggests that at large ¢, when
finite dimensions of the system become comparable with
diffusion path and initial correlations are no longer a de-
cisive factor (see Ref. [5]), p(¢) <t ™", v=1. Nevertheless,
this region (we will refer to it as a final scaling region) is
not in fact observed in our simulations, because it hap-
pens at much later stage of the process.

The aim for the simulations described in this paper,
therefore, is to analyze in detail the region of the inter-
mediate scaling, when the power-law behavior with v+1
occurs. Different conditions ranging from zero force con-
stant and finite temperature to zero temperature and
finite force constant, are analyzed numerically by use of
Brownian dynamics.

SIMULATION DETAILS

The equation of defect motion is a Langevin equation;

r;(t+6t)—r;(t)=u Y Fdt+08ry
=(D /kyT) Eqiqurij/rijz 8t +8r,; ,

4)

where r; locates defect i, rii is a distance between defects i
and j, D =kp Ty is the defect diffusion constant, 8r,; is a
random Brownian displacement of the ith defect, and g;
is the ith defect’s charge (either +1 or —1). If the dis-
tance between two defects of opposite sign becomes less
than r,, these defects are considered to have annihilated
and are removed from the system.

The simulation results are given in physical units
relevant to the freely suspended film system. For exam-
ple, r, was assigned the value of 0.001 cm, the micro-
scope resolution in the DRLM experiments. The initial
particle distribution was random. The time step 6¢ is
chosen to be the time interval over which diffusive and
deterministic displacement of a defect in an annihilating
pair together amount to a maximum of r, or less;

2V 2k Tudt +Kubdt /r,<r, .

As discussed above in the liquid crystal film experi-
ments [1-4], the topological defect drag coefficient is re-

lated to the rotational viscosity of LC molecules, and
molecular rotational viscosity itself is a function of tem-
perature. However, for simplicity, we have ignored this
T dependence so that defect mobility p (which in the case
of liquid crystals is an inverse function of their rotational
viscosity) remains unchanged as 7 and D both approach
zero. The elastic constant K=1.5X10"12 erg for a
three-layer-thick p-decyloxy benzylidene, p’-amino 2-
methylbutyl cinnamate (DOBAMBC) film with a director
tilt angle 6=23.5°, typical for freely suspended films well
into the smectic-C phase [8]. For a smectic-C phase,
K < n sin%(0), where n is the number of layers in the film,
so that K can vary over a wide range of values in a given
film as 6 changes. The defect mobility is taken to be
u=(D /kpT)=3.9X10° (cm/dyn sec), the value obtained
from Eq. (1) for a three-layer-thick DOBAMBC film with
LC rotational viscosity of 4.4 X 10™° dyn sec/cm and sys-
tem radius R =1 cm [3].

Each run consisted of 20 000 time steps. The particles
moved in a 0.1X0.1 cm? square area with periodic
boundary conditions. The minimum image principle was
used (each particle interacts only with those particles or
particle images that are within the 0.1X0.1 cm square
area with center at the particle position).

The dynamics can be expected to show a characteristic
dependence on the parameters K, T, and p in the diffusive
and deterministic limits. In diffusive limit, e.g., we can
produce two dimensionless combinations of particle den-
sity p, time ¢, initial density p,, and diffusion constant D:
A=(p/py) and A,=(p,Dt). We expect, therefore, to
have some functional dependent A;= f4:(A,) describing
scaling properties of the system in this limit. For some
region of A,, this dependence can be a power law, and,
according to Ref. [5], the exponent of this power law
equals 0.5. In deterministic limit, the <“effective
diffusivity” Kp replaces D to yield A;=(p/py),
A,=(poKput), and A;=f4.(A,;). Again, for some region
of A,, this functional dependence is a power law. Specific
features of this dependence are discussed in the next sec-
tion.

RESULTS

The annihilation run configurations were analyzed for
a variety of dynamical characteristics and statistical mea-
sures of defect motion and correlation. Figure 1(a) shows
the number of remaining defects N(¢) vs ¢ for initial num-
bers Ny, =200, 500, and 2000 of randomly placed defects
for force constant K =10"!! erg and temperature T=0.
These and subsequent N(z) data are obtained from
averaging over 30 runs of 20000 time steps. For this
choice of parameters, there is no thermal diffusion and, as
was discussed previously, the characteristic system time
scales as 1/N,. Figure 1(b) shows this scaling, N(z) ex-
hibiting similar behavior for all N, values and the three
curves overplotting in scaled coordinates (N /Ng) vs
(Nyt). This scaling behavior indicates that there is little
dependence on system size in the simulations. The
straightline, having a slope of 0.90 indicates the asymp-
totic power-law exponent of N(¢), v=0.90x0.05.

Figure 2(a) gives N(z) for Ny=500 and varying values
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FIG. 1. Particle number as function of time for different ini-
tial densities (N,=200, 500, and 2000) at T=0 K, K=10"1!
erg, unscaled (a) and scaled (b) plots. Decay power exponent
v=—d(logN)/d(logt)=0.901+0.05. Dashed straight line has
slope 0.90.

of the force constant K at fixed temperature T=400 K,
obtained by averaging over 30 runs of 20000 time step
for each K. As suggested by the scaling rule for the
deterministic regime (as discussed in the previous sec-
tion), all these data lay perfectly onto one master curve
(N /Ny) vs Kt, showing that N(¢) exhibits the expected
scaling behavior for large K > 10" !* erg. However, for
smaller K, diffusion plays an important role and this scal-
ing is lost, i.e., at small or zero K, diffusion begins to pre-
vail over long-range deterministic interaction, thus
changing the driving mechanism of number decay.

In Fig. 3, the same dependence on K is analyzed for
T=0 K. Again, data show same scaling behavior as in
the previous case.

All of the N vs t data, plotted in double-logarithmic
scale, show two distinct regions. At the early time, decay
is rather slow, and d(logN)/d(logt)~=0. At later times,
density exhibits a power-law decay, with
—1<d(logN)/d(logt)<0. We observe two distinct
cases for this intermediate scaling region: If deterministic
forces are much stronger than diffusion, then
d(logN)/d(logt )= —0.90=£0.05; if diffusion is dominant
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FIG. 2. Particle number as function of time for different
force constants (K=1071° 107!, 107'2, 1073, 107", and 0
erg) at =400 K and N, =500, unscaled (a) and scaled (b) plots.
Decay power exponents v=—d(logN)/d(logt)=0.84+0.05 for
K>10"" erg, v=0.84+0.05 for K=10"'* erg, and
v=0.55+0.05 for K=0. Dashed-dotted line has slope 0.84 and
dotted line has slope 0.90.

in the system, then d(logN)/d(logt)=—0.55+0.05. In
Fig. 4, N vs t for several different temperatures in the case
K =0 are shown, with evident scaling behavior and the
same exponent 0.55 in the intermediate scaling region.
While this result is in agreement with other simulations
of two-dimensional Brownian systems [5], the exponent
measured for the deterministic case (v=0.90) has not
been reported in the literature. The origins of this ex-
ponent will be discussed in the next section.

We have also calculated g(r) for the + and — defects
as a function of r at temperature 400 K and force con-
stant 107! erg at time ¢t =0.6 sec. The correlation func-
tion for particles of opposite sign, g, _(r), is shown in
Fig. 5, and the correlation function for particles of the
same sign, g . (r) or g__(r), is shown in Fig. 6. Both
correlation functions were produced by averaging over 60
runs. The data in Fig. 5 shows that g _(r) has a small
peak near r,; at the same time, as it can be seen from Fig.
6, g + + (r) vanishes rapidly near r,. These results are also
in agreement with earlier simulations [6].
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FIG. 3. Particle number as function of time for different
force constants (K =1071°, 107!, 1072, and 10~ !* erg) at T=0
K and N,=500, unscaled (a) and scaled (b) plots. Decay power
exponent v=—d (logN')/d(logt)=0.90+0.05. Dashed line has
slope 0.90.

To provide better insight to the annihilation dynamics,
we carried out the following calculation. For each pair of
defects, annihilating at time 7, (actual time), the time T,
(pair time) is determined. The pair time T, is the time re-
quired for this pair to annihilate in the absence of other
particles, starting from their position in the initial
configuration, driven only by their mutual attraction. If
the initial particle separation in the pair is L, then
T,=L 2/(4K ). In Fig. 7, pair time is plotted against ac-
tual time. The data show that 7, is usually larger than
T,, so the large-scale charge density fluctuations seem to

accelerate annihilation of pairs of remote particles.
THEORY

It is known that for systems of charged particles al-
lowed to annihilate, the annihilation rate, as determined
by the mean-field approach, is given by px7~%, v=1 (if
system dimensionality d is two or more). Nevertheless,
simulation results do not seem to support this prediction.
According to Ref. [5], in the case of charged particles
with no long-range forces, when only diffusive motion
governs the rate of annihilation, particle density scales as
p <t~ %3 (for d=2). This result is in agreement also with
our simulations. In Ref. [6], it is suggested that for d =2
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FIG. 4. Particles number as function of time for different
temperatures (7'=40, 400, and 4000 K) at K =0 and N,=500,
unscaled (a) and scaled (b) plots. Decay power exponent
v=—d(logN /)d(logt)=0.55+0.05. Dashed line has slope
0.55.

and with long-range logarithmic potential with no
thermal diffusion in the system, particle density scales as
p <t~ %75 The results of our simulations suggest slightly
different exponent, p <t ~%%%0-05 The following scaling
hypothesis explains this exponent and predicts the
theoretical value of v=6/7.
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FIG. 5. Correlation function g(r) for + and — defects for
T=400 K, N, =500, and K =10"!! erg at time 0.6 sec.
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Since deviations from mean-field behavior are caused
by large-scale fluctuations, it is necessary to consider
large region of characteristic size L. At the very begin-
ning, particle density fluctuation 8py(L) is proportional
to (pody)'/2L 7372 (see Ref. [6]). Indeed, since long-range
potential forces act between particles, a Gaussian
theorem holds for this system

[E,di=2mAQ , (5)

where E, is a component of the field, normal to the con-
tour of integration, and AQ is net charge in a region in-
side this contour. Let us now divide the region under
consideration into small domains of size dyXd,,
do=(py)~/? being the average distance between parti-
cles. In this case we can say that only particles that are
in the border area contribute to the left-hand side of Eq.
(4). The average number of particles in this area is pro-
portional to pyLd,, and fluctuations of this number are,
therefore, proportional to (py,Ld,)!”%. According to Eq.
(4), charge fluctuations in the domain as a whole are pro-
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FIG. 7. Plot of pair annihilation time vs actual annihilation
time, T=0 K, K=10"!! erg, and N,=500. Power exponent
p=d /(logT,)/d(logT,)=1.14+0.05. Dashed line has slope 1,
solid line is the best linear fit for the data and has slope 1.14.

portional to particle number fluctuation in the domain
boundary region. That brings us to the scaling relation
8po(L)~AQ /L*x (pyd,)'/2L ~3/%, as pointed above.
According to the ideas of the scaling approach, when
all particle-antiparticle pairs in the area L XL have an-
nihilated, particle density at this moment is close to
8po(L), and particles of only one sign are present in the
area. Let us denote 7, the time at which this annihila-
tion is complete. Then, most of the particles annihilating
at t~7;, had traveled a mean-square distance of the or-
der of L, otherwise annihilation would not be complete.
The Langevin equation for a particle’s motion in a
viscous medium with deterministic force F acting on it, is

mR, +(1/u)R,=F , (6)

where m is particle’s mass, u is particle mobility, and R is
absolute displacement of the particle. We can multiply by
R both sides of Eq. (6) and average to get (see Ref. [11])

(R?),+(1/um)R?),=D+{F-R)/m , (7

where () means average over all particles and F-R is a
scalar product of force and displacement vectors.

Here we make an assumption that the motion of each
particle is not chaotic, but deterministic, and that aver-
age (F-R) is not zero, as it is in diffusive motion. In this
case, we can estimate (F-R) by using the following di-
mension arguments:

(i) F should be of the order of K /d; recalling that
d=p~ /2 and substituting p=(podo)/*L 7372, we obtain
the estimate for F;

FOCK(pOdO)l/4(L2)—3/8 , (8)
(i) R=(L*'2. 9

Therefore, after substituting in Eq. (7) (F-R) with FR
[F,R given by Egs. (8) and (9)], neglecting the second
time derivative in the left-hand side and diffusion con-
stant D in the right-hand side of Eq. (7), we obtain

(L2),=[Ky](p0d0)”4(L2)1/8 . (10)
It immediately follows from Eq. (10) that

(L?) < [Ku(pody) 4137, (11a)

P < (podo) ML) T4 < po[(Kp)pgt 177, (11b)

which is in very good agreement with our simulations
data.

Equation (11b) accounts also for the scaling behavior
of normalized density p/p, as a function of time and
force constant K [see Figs. 2(a) and 2(b)].

It is worth mentioning that, because particles are
driven by the field instead of moving diffusively, the an-
nihilation time for pair of opposite charge particles in the
presence of other particles (actual time T,) is less than in
the system with no other particles (pair time 7,). Ac-
cording to Eq. (11a), if the initial distance between parti-
cles was L, the time before annihilation is proportional to
L77%. On the other hand, for the same pair in the absence
of other charges, the Langevin equation is
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(1/u)R,+K /(2R)=0 , (12)

where 2R is the distance between particles. After in-
tegration we obtain

L?=(4Kp)t . (13)

Therefore, for large L, the actual time of annihilation
T, is proportional to L7/#, while the isolated pair annihi-
lation time T, is proportional to L2, This means that
T,<T;”7. In Fig. 7(b), the log-log plot for T, vs T, is
shown; in the region corresponding to the intermediate
scaling regime (7,>0.01 sec), the average slope is
1.1440.05, which is in perfect agreement with the scal-
ing prediction 1.143.

Since annihilation kinetics can be described in terms of
densities and pair correlation function, we can also specu-
late about the time behavior of the correlation function
for particles with opposite charges. If density time
dependence is described by Eq. (3), then by substituting p
with its scaling time dependence, we can obtain such a
dependence for g(t,r.): g(t,r,)«t 17, therefore de-
creasing with time until becoming asymptotically close to
one in the final region.

DISCUSSION

The model used in the simulations, was slightly
different from the typical XY model. Because defects in a
two-dimensional system are considered as point particles
moving in liquid, not as field singularities, one could ex-
pect some differences in these two models. These
differences could, in principle, lead to some corrections in
predicted density decay kinetics—corrections that, most
likely, should be logarithmic, like in Ref. [7]. Neverthe-
less, our approach suggests several important features in
defect behavior that will not be changed even if these
corrections are taken into account.

Since defects or particles interact strongly in this sys-
tem, the charge density fluctuations in a region of size L
are proportional to its perimeter 277L, not its area L2,
This, in turn, means that, unlike the case of pure diffusion
(as in Ref. [5]), only small part of charged particles could
find themselves close to particles of the same sign—but
these particles will be affected more strongly than in the
case of diffusion because of long-range interaction now in
effect. So, while most defects annihilate rather quickly in
the bulk of this region (with mean-field exponent 1), these
extra particles will have to travel larger distances before
annihilating. It seems to account for paradox, described
by Mondello and Goldenfeld [6], that although annihila-
tion exponent v> 0.5 (annihilation is quicker than in case
of pure diffusion), mean-square displacement of a particle
(r¥(t)) <t*<1. This paradox seems to be explained by
the fact that, though a small fraction of particles do trav-
el larger distances and account for annihilation decay ex-
ponent, the majority of particles are rather immobile and
do not need to travel in order to annihilate—a situation
that somewhat resembles normal and superfluid fractions

in liquid helium. Although we cannot for now explain
quantitatively the {(r%(¢)) dependence, since it requires
thorough account of motion of “immobile” particles,
qualitatively this concept seems to be in agreement with
all results.

We believe that the same approach could be used for
other similar problems—systems with particles with non-
logarithmic interaction and/or three dimensional instead
of two dimensional.

CONCLUSIONS

The model was developed and simulations were per-
formed to investigate behavior of two-dimensional system
with charged particles of two opposite signs, immersed
into medium with constant viscosity and interacting with
logarithmic interaction. It served to describe kinetics
and dynamics of disclination-type defects in freely
suspended films of liquid crystals, but can also model oth-
er two-dimensional systems.

In our simulations the region of intermediate scaling
behavior was investigated. In the intermediate region, the
kinetics of particle annihilation is determined mostly by
the initial density fluctuations, whereas in the final scal-
ing region at later time, it is determined only by current
density and strength of interaction. In the final scaling
region, where initial density is not a parameter, scaling
requires p <L ~2oc(Ktu)~!. In the intermediate region,
though, another length parameter d, exists, so different
exponents may be obtained for particle density decay in
systems with different mechanisms of particle motion
(like pure deterministic or pure diffusive). It also depends
on the behavior of the particle mobility, which is con-
stant in our model, but becomes a function of the dis-
tance between particles in all continuum models, thus
giving a logarithmic (nonpower) factor to particle decay
law in the intermediate region.

Our simulations seem to suggest that long-range forces
significantly accelerate annihilation in comparison with
pure diffusive regime. Fluctuations are smaller and parti-
cles can move quicker because of net local effective
forces. All this leads to exponent v=~0.90%+0.05, which
was obtained in the course of the simulations. The scal-
ing hypothesis, proposed for this case by the authors,
suggests exponent v=0.843—in a very good agreement
with simulation value.

The results of our scaling estimates are valid for the
systems with predominant deterministic forces, giving a
value of v=0.9010.05; when temperature becomes com-
parable with force constant, crossover occurs to
v=0.5%0.05 as can be seen in Fig. 2 [9,10].
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